直接嵌入c源代码到go代码里面
package main
/*
#include stdio.h
void myhello(int i) {
printf("Hello C: %d\n", i);
}
*/
import "C"
import "fmt"
func main() {
fmt.Println("Hello Go");
需要注意的是C代码必须放在注释里面
import "C"语句和前面的C代码之间不能有空行
运行结果
$ go build main.go ./main
Hello Go
分开c代码到单独文件
嵌在一起代码结构不是很好看,很多人包括我,还是喜欢把两个分开,放在不同的文件里面,显得干净,go源文件里面是go的源代码,c源文件里面是c的源代码.
$ ls
hello.c hello.h main.go
$ cat hello.h
void hello(int);
$ cat hello.c
void hello(int i) {
$ cat main.go
// #include "hello.h"
编译运行
$ go build ./main
编译成库文件
如果c文件比较多,最好还是能够编译成一个独立的库文件,然后go来调用库.
$ find mylib main
mylib
mylib/hello.h
mylib/hello.c
main
main/main.go
编译库文件
$ cd mylib
# gcc -fPIC -shared -o libhello.so hello.c
编译go程序
$ cd main
// #cgo CFLAGS: -I../mylib
// #cgo LDFLAGS: -L../mylib -lhello
$ go build main.go
运行
$ export LD_LIBRARY_PATH=../mylib
$ ./main
在我们的例子中,库文件是编译成动态库的,main程序链接的时候也是采用的动态库
$ ldd main
理论上讲也是可以编译成整个一静态链接的可执行程序,由于我的机器上缺少静态链接的系统库,比如libc.a,所以只能编译成动态链接.
智能合约调用是实现一个 DApp 的关键,一个完整的 DApp 包括前端、后端、智能合约及区块 链系统,智能合约的调用是连接区块链与前后端的关键.
我们先来了解一下智能合约调用的基础原理.智能合约运行在以太坊节点的 EVM 中.所以呢要 想调用合约必须要访问某个节点.
以后端程序为例,后端服务若想连接节点有两种可能,一种是双 方在同一主机,此时后端连接节点可以采用 本地 IPC(Inter-Process Communication,进 程间通信)机制,也可以采用 RPC(Remote Procedure Call,远程过程调用)机制;另 一种情况是双方不在同一台主机,此时只能采用 RPC 机制进行通信.
接着,我们来了解一下智能合约运行的过程.
智能合约的运行过程是后端服务连接某节点,将 智能合约的调用(交易)发送给节点,节点在验证了交易的合法性后进行全网广播,被矿工打包到 区块中代表此交易得到确认,至此交易才算完成.
就像数据库一样,每个区块链平台都会提供主流 开发语言的 SDK(Software Development Kit,软件开发工具包),由于 Geth 本身就是用 Go 语言 编写的,所以呢若想使用 Go 语言连接节点、发交易,直接在工程内导入 go-ethereum(Geth 源码) 包就可以了,剩下的问题就是流程和 API 的事情了.
最后提醒一下大家,智能合约被调用的两个关键点是节点和 SDK.
此时此刻呢介绍如何使用 Go 语言,借助 go-ethereum 源码库来实现智能合约的调用.这是有固定 步骤的,我们先来说一下总体步骤,以下面的合约为例.
步骤 01:编译合约,获取合约 ABI(Application Binary Interface,应用二进制接口). 单击【ABI】按钮拷贝合约 ABI 信息,将其粘贴到文件 calldemo.abi 中(可使用 Go 语言IDE 创建该文件,文件名可自定义,后缀最好使用 abi).
最好能将 calldemo.abi 单独保存在一个目录下,输入"ls"命令只能看到 calldemo.abi 文件,参 考效果如下:
此时此刻呢设置 module 生效和 GOPROXY,命令如下:
在项目工程内,执行初始化,calldemo 可以自定义名称.
在前一小节中介绍了点亮第一个LED灯,这里我们准备进阶尝试下,输出第一段PWM波形.(PWM也就是脉宽调制,一种可调占空比的技术,得到的效果就是:如果用示波器测量引脚会发现有方波输出,而且高电平、低电平的时间是可调的.)
这里爪爪熊准备写成一个golang的库,并开源到github上,后续更新将直接更新到github中,如果你有兴趣可以和我联系. github.com/dpawsbear/bear_rpi_go
我在很多的教程中都看到说树莓派的PWM(硬件)只有一个GPIO能够输出,就是 GPIO1 .这可是不小的打击,因为我想使用至少四个 PWM ,还是不死心,想通过硬件手册上找寻蛛丝马迹,看看究竟怎么回事.
根据以上两个图对比可以发现如下规律:
为了验证个人猜想是否正确,这里先直接使用指令的模式,模拟配置下是否能够正常输出.
小节:树莓派具有四路硬件输出PWM能力,但是四路中只能输出两个独立(占空比独立)的PWM,同时四路输出的频率均是恒定的.
因为拿到了手册,这里我想直接操作寄存器的方式进行设置,也是顺便学习下Go语言处理寄存器的过程.首先需要拿到pwm 系列寄存器的基地址,但是翻了一圈手册,发现只有偏移,没有找到基地址.
以下是demo(pwm) 源码
①最简单的方法:
public static String reverse1(String str)
{ return new StringBuffer(str).reverse().toString();
{ char[] array = s.toCharArray();
String reverse = ""; //注意这是空串,不是null
for (int i = array.length - 1; i = 0; i--)
reverse += array[i];
return reverse;
{ int length = s.length();
for (int i = 0; i length; i++)
reverse = s.charAt(i) + reverse;//在字符串前面连接, 而非常见的后面