Python:常用函数封装:
def is_chinese(uchar):
"""判断一个unicode是否是汉字"""
return True
else:
return False
def is_number(uchar):
"""判断一个unicode是否是数字"""
def is_alphabet(uchar):
"""判断一个unicode是否是英文字母"""
def is_other(uchar):
"""判断是否非汉字,数字和英文字符"""
if not (is_chinese(uchar) or is_number(uchar) or is_alphabet(uchar)):
"""半角转全角"""
inside_code=ord(uchar)
return uchar
inside_code+=0xfee0
return unichr(inside_code)
"""全角转半角"""
inside_code-=0xfee0
"""把字符串全角转半角"""
def uniform(ustring):
"""格式化字符串,完成全角转半角,大写转小写的工作"""
"""将ustring按照中文,字母,数字分开"""
retList=[]
utmp=[]
for uchar in ustring:
if is_other(uchar):
if len(utmp)==0:
continue
retList.append("".join(utmp))
utmp.append(uchar)
if len(utmp)!=0:
return retList
Python中有许多内置函数,不像print、len那么广为人知,但它们的功能却异常强大,用好了可以大大提高代码效率,同时提升代码的简洁度,增强可阅读性
Counter
容器名简介
namedtuple() 创建命名元组子类的工厂函数
deque 类似列表(list)的容器,实现了在两端快速添加(append)和弹出(pop)
ChainMap 类似字典(dict)的容器类,将多个映射集合到一个视图里面
Counter 字典的子类,提供了可哈希对象的计数功能
OrderedDict 字典的子类,保存了他们被添加的顺序
defaultdict 字典的子类,提供了一个工厂函数,为字典查询提供一个默认值
UserDict 封装了字典对象,简化了字典子类化
UserList 封装了列表对象,简化了列表子类化
UserString 封装了字符串对象,简化了字符串子类化
其中Counter中文意思是计数器,也就是我们常用于统计的一种数据类型,在使用Counter之后可以让我们的代码更加简单易读.Counter类继承dict类,所以它能使用dict类里面的方法
举例
#统计词频
fruits = ['apple', 'peach', 'apple', 'lemon', 'peach', 'peach']
result = {}
for fruit in fruits:
if not result.get(fruit):
result[fruit] = 1
result[fruit] += 1
print(result)
from collections import Counter
c = Counter(fruits)
print(dict(c))
elements()
返回一个迭代器,其中每个元素将重复出现计数值所指定次.元素会按首次出现的顺序返回.如果一个元素的计数值小于1,elements()将会忽略它.
sorted(c.elements())
['a', 'a', 'a', 'a', 'b', 'b']most_common([n])
返回一个列表,其中包含n个最常见的元素及出现次数,按常见程度由高到低排序.如果n被省略或为None,most_common()将返回计数器中的所有元素.计数值相等的元素按首次出现的顺序排序:
实战
给你一个字符串数组words,请你找出所有在words的每个字符串中都出现的共用字符(包括重复字符),并以数组形式返回.你可以按任意顺序返回答案.
输入:words = ["bella", "label", "roller"]
输出:["e", "l", "l"]
输入:words = ["cool", "lock", "cook"]
输出:["c", "o"]看到统计字符,典型的可以用Counter完美解决.这道题是找出字符串列表里面每个元素都包含的字符,首先可以用Counter计算出每个元素每个字符出现的次数,依次取交集最后得出所有元素共同存在的字符,然后利用elements输出共用字符出现的次数
class Solution:
def commonChars(self, words: List[str]) - List[str]:
ans = Counter(words[0])
for i in words[1:]:
ans = Counter(i)
sorted
在处理数据过程中,我们经常会用到排序操作,比如将列表、字典、元组里面的元素正/倒排序.这时候就需要用到sorted(),它可以对任何可迭代对象进行排序,并返回列表
对列表升序操作:
print(a)
fruits = ['apple', 'watermelon', 'pear', 'banana']
a = sorted(fruits, key = lambda x : len(x))
# 输出:['pear', 'apple', 'banana', 'watermelon']all
all() 函数用于判断给定的可迭代参数iterable中的所有元素是否都为 TRUE,如果是返回 True,否则返回 False.元素除了是 0、空、None、False外都算True.注意:空元组、空列表返回值为True.
all(['a', 'b', 'c', 'd']) # 列表list,元素都不为空或0
True
all(['a', 'b', '', 'd']) # 列表list,存在一个为空的元素
False
all(('a', 'b', 'c', 'd')) # 元组tuple,元素都不为空或0
all(('a', 'b', '', 'd')) # 元组tuple,存在一个为空的元素
all([]) # 空列表
all(()) # 空元组
Trueany函数正好和all函数相反:判断一个tuple或者list是否全为空,0,False.如果全为空,0,False,则返回False;如果不全为空,则返回True.
F-strings
s1='Hello'
# Hello World!在F-strings中我们也可以执行函数:
def power(x):
return x*x
print(f'{x} * {x} = {power(x)}')
本文主要讲解了python几种冷门但好用的函数,更多内容以后会陆陆续续更新~
年前走查脚本代码时,发现大家对selenium功能都在重复造轮子,而且容易出现一些常见低级bug.于是在闲暇之余,封装一些常用的selenium功能.
在某些网页中,存在多个frame嵌套.而selenium提供的find_element函数只能在当前frame中查找,不能切换到其他frame中,需要从最上级frame中逐步切换(当然也可以指定xpath的绝对路径,但是一般没人这么做).在我们写代码过程中,需要明确知道当前frame位置和需要寻找元素的frame位置.在frame切换过程中,容易因为疏忽导致frame切换错误导致元素无法找到的bug.
页面中分布的frame,可以理解为树状结构.所以呢我们可以采用递归的方式, 沿着某条搜索路线frame节点,依次对树中每个节点均做一次访问.
手动切换ifame可能会产生bug,所以呢需要一套自动切换和检索frame的机制.具体代码如下:
需要注意的是:如果页面中多个frame中,存在相同的xpath元素.还是需要指定frame的路径,否则会返回搜索到的第一个元素.
强制等待
直接调用系统time.sleep函数,不管页面加载情况一定会等待指定的时间, 即使元素已被加载 .
①如果设置的时间较长,会浪费时间
页面中某元素如果未能立即加载,隐式等待告诉WebDriver需等待一定的时间,然后去查找元素.默认不等待,隐式等待作用于整个WebDriver周期,只需设置一次即可.
①在上文的find_element函数中,采用递归方式在所有frame寻找元素.若采用隐式等待,则在每个frame中都需要等待设定的时间,耗时非常长.
driver 注释中解释为WebDriver实例,但是代码中并未有相关检测,所以呢可以传入任何对象
但是__repr__函数中使用到session_id属性,如果需要显示属性或者转为str对象,最好在driver对象中添加session_id属性
在until函数中,我们可以看到driver对象传入method函数.在计时结束前,在不断循环执行method函数,如果method函数有正常返回值则退出循环,否则报TimeoutException错误.
可以采用装饰器对隐式等待进行封装,这样代码更加精简
装饰器虽然很方便,但也会产生一些麻烦.例如在find_element函数递归调用过程中,理应只要执行一次装饰器函数.但因为装饰器已经装饰完毕,导致每次递归都会执行.例如强制等待的sleep函数,如果递归次数越多等待时间越长.
解除装饰器一般有两种做法:一是约定参数,当递归第二次调用时则不生效.例如
这种方式实现简单,容易理解.但是增加了参数限制,在fun函数中就不能使用first_sleep参数.
二是采用装饰器采用wrapped实现,通过访问wrapped属性获得原始函数.例如
但是某一个函数被多个装饰器装饰时,需要递归解除装饰器.例如
最后整体代码如下
这次的封装其实还存在很多问题
①find_element函数不仅仅只是提供查找元素功能,还提供一些其他功能,所以呢叫element_operation更为合适.
如果只是简单地封装和使用,上面这种方式也能达到较好的效果.如果想进一步封装,建议采用链式调用方式,装饰器辅助封装.例如
这样函数的扩展性和可阅读性有较大的提升
以上就是土嘎嘎小编为大家整理的python封装好的函数相关主题介绍,如果您觉得小编更新的文章只要能对粉丝们有用,就是我们最大的鼓励和动力,不要忘记讲本站分享给您身边的朋友哦!!