网站首页 > 文章中心 > 其它

卷积核函数python_Python函数的参数搭建函数房子的砖

作者:小编 更新时间:2023-08-12 19:12:26 浏览量:214人看过

python三维卷积可以用什么函数? matlab只要用convn

'''

三维卷积

:return:

h, w, c = image.shape

x, y, z = filter.shape

height_new = h - x + 1 ?# 输出 h

卷积核函数python_Python函数的参数搭建函数房子的砖-图1

width_new = w - y + 1 ?# 输出 w

image_new = np.zeros((height_new, width_new), dtype=np.float)

for i in range(height_new):

for j in range(width_new):

r = np.sum(image[i:i+x, j:j+x, 0] * filter[:,:,0])

卷积核函数python_Python函数的参数搭建函数房子的砖-图2

g = np.sum(image[i:i+y, j:j+y, 1] * filter[:,:,1])

image_new[i, j] = np.sum([r,g,b])

return image_new

怎样用python构建一个卷积神经网络

用keras框架较为方便

首先安装anaconda,然后通过pip安装keras

以下转自wphh的博客.

GPU?run?command:

CPU?run?command:

python?cnn.py

这份代码是keras开发初期写的,当时keras还没有现在这么流行,文档也还没那么丰富,所以我当时写了一些简单的教程.

现在keras的API也发生了一些的变化,建议及推荐直接上keras.io看更加详细的教程.

#导入各种用到的模块组件

from?__future__?import?absolute_import

from?__future__?import?print_function

from?keras.preprocessing.image?import?ImageDataGenerator

from?keras.models?import?Sequential

from?keras.layers.core?import?Dense,?Dropout,?Activation,?Flatten

from?keras.layers.advanced_activations?import?PReLU

from?keras.optimizers?import?SGD,?Adadelta,?Adagrad

from?keras.utils?import?np_utils,?generic_utils

from?six.moves?import?range

from?data?import?load_data

import?random

import?numpy?as?np

#加载数据

data,?label?=?load_data()

#打乱数据

index?=?[i?for?i?in?range(len(data))]

random.shuffle(index)

data?=?data[index]

label?=?label[index]

print(data.shape[0],?'?samples')

label?=?np_utils.to_categorical(label,?10)

###############

#开始建立CNN模型

#生成一个model

model?=?Sequential()

#border_mode可以是valid或者full,具体看这里说明:

#激活函数用tanh

model.add(Activation('tanh'))

model.add(Activation('relu'))

#全连接层,先将前一层输出的二维特征图flatten为一维的.

model.add(Flatten())

#Softmax分类,输出是10类别

model.add(Dense(10,?init='normal'))

model.add(Activation('softmax'))

#############

#开始训练模型

##############

#使用SGD?+?momentum

#model.compile里的参数loss就是损失函数(目标函数)

model.compile(loss='categorical_crossentropy',?optimizer=sgd,metrics=["accuracy"])

#调用fit方法,就是一个训练过程.?训练的epoch数设为10,batch_size为100.

"""

#使用data?augmentation的方法

#一些参数和调用的方法,请看文档

datagen?=?ImageDataGenerator(

featurewise_center=True,?#?set?input?mean?to?0?over?the?dataset

samplewise_center=False,?#?set?each?sample?mean?to?0

zca_whitening=False,?#?apply?ZCA?whitening

horizontal_flip=True,?#?randomly?flip?images

vertical_flip=False)?#?randomly?flip?images

#?compute?quantities?required?for?featurewise?normalization?

#?(std,?mean,?and?principal?components?if?ZCA?whitening?is?applied)

datagen.fit(data)

for?e?in?range(nb_epoch):

print('Epoch',?e)

print("Training...")

#?batch?train?with?realtime?data?augmentation

progbar?=?generic_utils.Progbar(data.shape[0])

for?X_batch,?Y_batch?in?datagen.flow(data,?label):

loss,accuracy?=?model.train(X_batch,?Y_batch,accuracy=True)

progbar.add(X_batch.shape[0],?values=[("train?loss",?loss),("accuracy:",?accuracy)]?)

怎样用python构建一个卷积神经网络?

①.、#导入各种用到的模块组件

from __future__ import absolute_import

from __future__ import print_function

from keras.preprocessing.image import ImageDataGenerator

from keras.models import Sequential

from keras.layers.core import Dense, Dropout, Activation, Flatten

from keras.layers.advanced_activations import PReLU

from keras.optimizers import SGD, Adadelta, Adagrad

from keras.utils import np_utils, generic_utils

from six.moves import range

from data import load_data

import random

import numpy as np

index = [i for i in range(len(data))]

data = data[index]

label = label[index]

print(data.shape[0], ' samples')

label = np_utils.to_categorical(label, 10)

model = Sequential()

model.add(Dense(10, init='normal'))

#使用SGD + momentum

model.compile(loss='categorical_crossentropy', optimizer=sgd,metrics=["accuracy"])

#调用fit方法,就是一个训练过程. 训练的epoch数设为10,batch_size为100.

#使用data augmentation的方法

datagen = ImageDataGenerator(

featurewise_center=True, # set input mean to 0 over the dataset

samplewise_center=False, # set each sample mean to 0

zca_whitening=False, # apply ZCA whitening

horizontal_flip=True, # randomly flip images

vertical_flip=False) # randomly flip images

# compute quantities required for featurewise normalization

# (std, mean, and principal components if ZCA whitening is applied)

for e in range(nb_epoch):

print('Epoch', e)

# batch train with realtime data augmentation

progbar = generic_utils.Progbar(data.shape[0])

for X_batch, Y_batch in datagen.flow(data, label):

loss,accuracy = model.train(X_batch, Y_batch,accuracy=True)

progbar.add(X_batch.shape[0], values=[("train loss", loss),("accuracy:", accuracy)] )

Python 中用于两个值卷积的函数是什么,我知道matlab 中是conv,Python中有预知对应的吗

全部用文件IO的话可以这样: matlab把所有参数输出到一个文件里,然后用system命令调python脚本.python脚本读文件做计算结果再写文件.最后matlab再读文件得到结果. 假设python脚本的用法是: python xxx.py in.txt out.txt 则matlab调用命令...

以上就是土嘎嘎小编为大家整理的卷积核函数python相关主题介绍,如果您觉得小编更新的文章只要能对粉丝们有用,就是我们最大的鼓励和动力,不要忘记讲本站分享给您身边的朋友哦!!

版权声明:倡导尊重与保护知识产权。未经许可,任何人不得复制、转载、或以其他方式使用本站《原创》内容,违者将追究其法律责任。本站文章内容,部分图片来源于网络,如有侵权,请联系我们修改或者删除处理。

编辑推荐

热门文章