① 键值数据库
相关产品:Redis、Riak、SimpleDB、Chordless、Scalaris、Memcached
应用:内容缓存
优点:扩展性好、灵活性好、大量写操作时性能高
缺点:无法存储结构化信息、条件查询效率较低
使用者:百度云(Redis)、GitHub(Riak)、BestBuy(Riak)、Twitter(Ridis和Memcached)
相关产品:BigTable、HBase、Cassandra、HadoopDB、GreenPlum、PNUTS
应用:分布式数据存储与管理
优点:查找速度快、可扩展性强、容易进行分布式扩展、复杂性低
使用者:Ebay(Cassandra)、Instagram(Cassandra)、NASA(Cassandra)、Facebook(HBase)
相关产品:MongoDB、CouchDB、ThruDB、CloudKit、Perservere、Jackrabbit
应用:存储、索引并管理面向文档的数据或者类似的半结构化数据
优点:性能好、灵活性高、复杂性低、数据结构灵活
缺点:缺乏统一的查询语言
使用者:百度云数据库(MongoDB)、SAP(MongoDB)
图形数据库-使用图作为数据模型来存储数据.
应用:大量复杂、互连接、低结构化的图结构场合,如社交网络、推荐系统等
优点:灵活性高、支持复杂的图形算法、可用于构建复杂的关系图谱
缺点:复杂性高、只能支持一定的数据规模
顾名思义就是非关系型数据库,它的出现,就是为了解决关系型数据库存在的一些问题,可以用NoSQL来进行弥补,现在听得比较多的NoSQL数据库有Redis、MongoDB、HBase等.
NoSQL:是一项全新的数据库革命性运动,NoSQL的拥护者们提倡运用非关系型的数据存储.现今的计算机体系结构在数据存储方面要求具 备庞大的水平扩 展性,而NoSQL致力于改变这一现状.
但是NoSQL数据库之间的不同,远超过两 SQL数据库之间的差别.这意味着软件架构师更应该在项目开始时就选择好一个适合的 NoSQL数据库.
目前大概有如下几种
一般将NoSQL数据库分为四大类:键值(Key-Value)存储数据库、列存储数据库、文档型数据库和图形(Graph)数据库.它们的数据模型、优缺点、典型应用场景.
键值(Key-Value)存储数据库Key指向Value的键值对,通常用hash表来实现查找速度快数据无结构化(通常只被当作字符串或者二进制数据)内容缓存,主要用于处理大量数据的高访问负载,也用于一些日志系统等.
列存储数据库,以列簇式存储,将同一列数据存在一起查找速度快,可扩展性强,更容易进行分布式扩展功能相对局限分布式的文件系统.
文档型数据库,Key-Value对应的键值对,Value为结构化数据,数据结构要求不严格,表结构可变(不需要像关系型数据库一样需预先定义表结构),查询性能不高,而且缺乏统一的查询语法,Web应用.
图形(Graph)数据库,图结构,利用图结构相关算法(如最短路径寻址,N度关系查找等),很多时候需要对整个图做计算才能得出需要的信息,而且这种结构不太好做分布式的集群方案,社交网络,推荐系统等.
常见的Nosql数据库有:
第一段:Redis数据库
第二段:MongoDB数据库
MongoDB是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数据库的.它支持的数据结构非常松散,是类似json的bson格式,所以呢可以存储比较复杂的数据类型.
Mongo最大的特点是它支持的查询语言非常强大,其语法有点类似于面向对象的查询语言,几乎可以实现类似关系数据库单表查询的绝大部分功能,而且还支持对数据建立索引.
扩展资料:
对于NoSQL并没有一个明确的范围和定义,但是他们都普遍存在下面一些共同特征:
第一段:易扩展
NoSQL数据库种类繁多,但是一个共同的特点都是去掉关系数据库的关系型特性.数据之间无关系,这样就非常容易扩展.无形之间,在架构的层面上带来了可扩展的能力.
第二段:大数据量,高性能
NoSQL数据库都具有非常高的读写性能,尤其在大数据量下,同样表现优秀.这得益于它的无关系性,数据库的结构简单.一般MySQL使用Query Cache.NoSQL的Cache是记录级的,是一种细粒度的Cache,所以NoSQL在这个层面上来说性能就要高很多.
第三段:灵活的数据模型
第四段:高可用
NoSQL在不太影响性能的情况,就可以方便地实现高可用的架构.比如Cassandra、HBase模型,通过复制模型也能实现高可用.
以上就是土嘎嘎小编为大家整理的主流nosql数据库类型相关主题介绍,如果您觉得小编更新的文章只要能对粉丝们有用,就是我们最大的鼓励和动力,不要忘记讲本站分享给您身边的朋友哦!!