网站首页 > 文章中心 > 其它

java性能优化热点代码

作者:小编 更新时间:2023-08-30 13:46:56 浏览量:42人看过

Java代码如何优化?从哪些方面入手?分析

尽量在合适的场合使用单例.使用单例可以减轻加载的负担、缩短加载的时间、提高加载的效率,但并不是所有地方都适用于单例.

Java性能如何优化?

代码优化细节

①.、尽量指定类、方法的final修饰符

带有final修饰符的类是不可派生的.在Java核心API中,有许多应用final的例子,例如java.lang.String,整个类都是final的.为类指定final修饰符可以让类不可以被继承,为方法指定final修饰符可以让方法不可以被重写.

特别是String对象的使用,出现字符串连接时应该使用StringBuilder/StringBuffer代替.由于Java虚拟机不仅要花时间生成对象,以后可能还需要花时间对这些对象进行垃圾回收和处理,所以呢,生成过多的对象将会给程序的性能带来很大的影响.

调用方法时传递的参数以及在调用中创建的临时变量都保存在栈中,速度较快,其他变量,如静态变量、实例变量等,都在堆中创建,速度较慢.另外,栈中创建的变量,随着方法的运行结束,这些内容就没了,不需要额外的垃圾回收.

java性能优化热点代码-图1

Java编程过程中,进行数据库连接、I/O流操作时务必小心,在使用完毕后,及时关闭以释放资源.因为对这些大对象的操作会造成系统大的开销,稍有不慎,将会导致严重的后果.

明确一个概念,对方法的调用,即使方法中只有一句语句,也是有消耗的,包括创建栈帧、调用方法时保护现场、调用方法完毕时恢复现场等.所以例如下面的操作:

for (int i = 0; i list.size(); i++)

{...}

建议替换为:

java性能优化热点代码-图2

for (int i = 0, length = list.size(); i length; i++)

这样,在list.size()很大的时候,就减少了很多的消耗

Java代码如何优化

① 尽量在合适的场合使用单例

使用单例可以减轻加载的负担,缩短加载的时间,提高加载的效率,但并不是所有地方都适用于单例,简单来说,单例主要适用于以下三个方面:

第一,控制资源的使用,通过线程同步来控制资源的并发访问;

第二,控制实例的产生,以达到节约资源的目的;

第三,控制数据共享,在不建立直接关联的条件下,让多个不相关的进程或线程之间实现通信.

要知道,当某个对象被定义为stataic变量所引用,那么gc通常是不会回收这个对象所占有的内存

尽量避免在经常调用的方法,循环中new对象,由于系统不仅要花费时间来创建对象,而且还要花时间对这些对象进行垃圾回收和处理,在我们可以控制的范围内,最大限度的重用对象,最好能用基本的数据类型或数组来替代对象.

调用方法时传递的参数以及在调用中创建的临时变量都保存在栈(Stack)中,速度较快.其他变量,如静态变量、实例变量等,都在堆(Heap)中创建,速度较慢.

虽然包装类型和基本类型在使用过程中是可以相互转换,但它们两者所产生的内存区域是完全不同的,基本类型数据产生和处理都在栈中处理,包装类型是对象,是在堆中产生实例.

在集合类对象,有对象方面需要的处理适用包装类型,其他的处理提倡使用基本类型.

都知道,实现同步是要很大的系统开销作为代价的,甚至可能造成死锁,所以尽量避免无谓的同步控制.synchronize方法被调用时,直接会把当前对象锁 了,在方法执行完之前其他线程无法调用当前对象的其他方法.所以synchronize的方法尽量小,并且应尽量使用方法同步代替代码块同步.

这个就不多讲了.

实际上,将资源清理放在finalize方法中完成是非常不好的选择,由于GC的工作量很大,尤其是回收Young代内存时,大都会引起应用程序暂停,所以再选择使用finalize方法进行资源清理,会导致GC负担更大,程序运行效率更差.

①.0. 尽量使用基本数据类型代替对象

String str = "hello";

上面这种方式会创建一个"hello"字符串,而且JVM的字符缓存池还会缓存这个字符串;

String str = new String("hello");

此时程序除创建字符串外,str所引用的String对象底层还包含一个char[]数组,这个char[]数组依次存放了h,e,l,l,o

①.1. 单线程应尽量使用HashMap、ArrayList

HashTable、Vector等使用了同步机制,降低了性能.

当你要创建一个比较大的hashMap时,充分利用另一个构造函数

public HashMap(int initialCapacity, float loadFactor)

并且在循环中应该避免使用复杂的表达式,在循环中,循环条件会被反复计算,如果不使用复杂表达式,而使循环条件值不变的话,程序将会运行的更快.

程序中使用到的资源应当被释放,以避免资源泄漏.这最好在finally块中去做.不管程序执行的结果如何,finally块总是会执行的,以确保资源的正确关闭.

"/"是一个代价很高的操作,使用移位的操作将会更快和更有效

同样的,对于'*'操作,使用移位的操作将会更快和更有效

大部分时,方法局部引用变量所引用的对象 会随着方法结束而变成垃圾,所以呢,大部分时候程序无需将局部,引用变量显式设为null.

二维数据占用的内存空间比一维数组多得多,大概10倍以上.

除非是必须的,否则应该避免使用split,split由于支持正则表达式,所以效率比较低,如果是频繁的几十,几百万的调用将会耗费大量资源,如果确实需 要频繁的调用split,可以考虑使用apache的StringUtils.split(string,char),频繁split的可以缓存结果.

System.arraycopy() 要比通过循环来复制数组快的多

尽可能将经常使用的对象进行缓存,可以使用数组,或HashMap的容器来进行缓存,但这种方式可能导致系统占用过多的缓存,性能下降,推荐可以使用一些第三方的开源工具,如EhCache,Oscache进行缓存,他们基本都实现了FIFO/FLU等缓存算法.

有时候问题不是由当时的堆状态造成的,而是因为分配失败造成的.分配的内存块都必须是连续的,而随着堆越来越满,找到较大的连续块越来越困难.

当创建一个异常时,需要收集一个栈跟踪(stack track),这个栈跟踪用于描述异常是在何处创建的.构建这些栈跟踪时需要为运行时栈做一份快照,正是这一部分开销很大.当需要创建一个 Exception 时,JVM 不得不说:先别动,我想就您现在的样子存一份快照,所以暂时停止入栈和出栈操作.栈跟踪不只包含运行时栈中的一两个元素,而是包含这个栈中的每一个元素.

如 果您创建一个 Exception ,就得付出代价.好在捕获异常开销不大,所以呢可以使用 try-catch 将核心内容包起来.从技术上讲,您甚至可以随意地抛出异常,而不用花费很大的代价.招致性能损失的并不是 throw 操作--尽管在没有预先创建异常的情况下就抛出异常是有点不寻常.真正要花代价的是创建异常.幸运的是,好的编程习惯已教会我们,不应该不管三七二十一就 抛出异常.异常是为异常的情况而设计的,使用时也应该牢记这一原则.

(1). 用Boolean.valueOf(boolean b)代替new Boolean()

这个已经被N多人说过N次了,这个就不多说了.

因为这两者都是非常占用内存的(特别是方法调用更是堆栈空间的消耗大户).

这是初学者最容易犯的错,合理的使用变量,并且只有在用到它的时候才定义和实例化,能有效的避免内存空间和执行性能上的浪费,从而提高了代码的效率.

这种情况在我们的实际应用中经常遇到,而且我们很容易犯类似的错误

采用上面的第二种编写方式,仅在内存中保存一份对该对象的引用,而不像上面的第一种编写方式中代码会在内存中产生大量的对象引用,浪费大量的内存空间,而且增大了垃圾回收的负荷.所以呢在循环体中声明创建对象的编写方式应该尽量避免.

这个小技巧往往能有效的提高程序的性能,尤其是当if判断放在循环体里面时,效果更明显.

①JVM管理两种类型的内存:堆内存(heap),栈内存(stack),堆内在主要用来存储程序在运行时创建或实例化的对象与变量.而栈内存则是用来存储程序代码中声明为静态(static)(或非静态)的方法.

①.0 .(1)最基本的建议就是尽早释放无用对象的引用

A a = new A();

a = null; //当使用对象a之后主动将其设置为空

①.1.当做数组拷贝操作时,采用System.arraycopy()方法完成拷贝操作要比采用循环的办法完成数组拷贝操作效率高

(1) 通过init()方法来缓存一些静态数据以提高应用性能.

(1)不要使用SingleThreadModel

实体EJB:

(1)实体EJB中常用数据缓存与释放

(1)设置合适的预取行值

如何优化JAVA代码及提高执行效率

可供程序利用的资源(内存、CPU时间、网络带宽等)是有限的,优化的目的就是让程序用尽可能少的资源完成预定的任务.优化通常包含两方面的内容:减小代码的体积,提高代码的运行效率.本文讨论的主要是如何提高代码的效率.

在Java程序中,性能问题的大部分原因并不在于Java语言,而是在于程序本身.养成好的代码编写习惯非常重要,比如正确地、巧妙地运用java.lang.String类和java.util.Vector类,它能够显著地提高程序的性能.下面我们就来具体地分析一下这方面的问题.

.

Java会把变量初始化成确定的值:所有的对象被设置成null,整数变量(byte、short、int、long)设置成0,float和double变量设置成0.0,逻辑值设置成false.当一个类从另一个类派生时,这一点尤其应该注意,因为用new关键词创建一个对象时,构造函数链中的所有构造函数都会被自动调用.

例如:for(int i = 0;i list.size; i ++) {

...

}

应替换为:

for(int i = 0,int len = list.size();i len; i ++) {

①.0、尽量采用lazy loading 的策略,即在需要的时候才开始创建.

例如: String str = "aaa";

if(i == 1) {

list.add(str);

String str = "aaa";

①.1、慎用异常

异常对性能不利.抛出异常首先要创建一个新的对象.Throwable接口的构造函数调用名为fillInStackTrace()的本地(Native)方法,fillInStackTrace()方法检查堆栈,收集调用跟踪信息.只要有异常被抛出,VM就必须调整调用堆栈,因为在处理过程中创建了一个新的对象.异常只能用于错误处理,不应该用来控制程序流程.

Try {

} catch() {

应把其放置在最外层.

StringBuffer表示了可变的、可写的字符串.

有三个构造方法 :

StringBuffer (int size); //分配size个字符的空间

你可以通过StringBuffer的构造函数来设定它的初始化容量,这样可以明显地提升性能.这里提到的构造函数是StringBuffer(int

length),length参数表示当前的StringBuffer能保持的字符数量.你也可以使用ensureCapacity(int

minimumcapacity)方法在StringBuffer对象创建之后设置它的容量.首先我们看看StringBuffer的缺省行为,然后再找出一条更好的提升性能的途径.

StringBuffer初始化过程的调整的作用由此可见一斑.所以,使用一个合适的容量值来初始化StringBuffer永远都是一个最佳的建议.

简单地说,一个Vector就是一个java.lang.Object实例的数组.Vector与数组相似,它的元素可以通过整数形式的索引访问.但是,Vector类型的对象在创建之后,对象的大小能够根据元素的增加或者删除而扩展、缩小.请考虑下面这个向Vector加入元素的例子:

Object obj = new Object();

Vector v = new Vector(100000);

for(int I=0;

I100000; I++) { v.add(0,obj); }

除非有绝对充足的理由要求每次都把新元素插入到Vector的前面,否则上面的代码对性能不利.在默认构造函数中,Vector的初始存储能力是10个元素,如果新元素加入时存储能力不足,则以后存储能力每次加倍.Vector类就象StringBuffer类一样,每次扩展存储能力时,所有现有的元素都要复制到新的存储空间之中.下面的代码片段要比前面的例子快几个数量级:

for(int I=0; I100000; I++) { v.add(obj); }

同样的规则也适用于Vector类的remove()方法.由于Vector中各个元素之间不能含有"空隙",删除除最后一个元素之外的任意其他元素都导致被删除元素之后的元素向前移动.也就是说,从Vector删除最后一个元素要比删除第一个元素"开销"低好几倍.

假设要从前面的Vector删除所有元素,我们可以使用这种代码:

for(int I=0; I100000; I++)

{

v.remove(0);

但是,与下面的代码相比,前面的代码要慢几个数量级:

v.remove(v.size()-1);

从Vector类型的对象v删除所有元素的最好方法是:

v.removeAllElements();

假设Vector类型的对象v包含字符串"Hello".考虑下面的代码,它要从这个Vector中删除"Hello"字符串:

String s = "Hello";

int i = v.indexOf(s);

if(I != -1) v.remove(s);

这些代码看起来没什么错误,但它同样对性能不利.在这段代码中,indexOf()方法对v进行顺序搜索寻找字符串"Hello",remove(s)方法也要进行同样的顺序搜索.改进之后的版本是:

if(I != -1) v.remove(i);

这个版本中我们直接在remove()方法中给出待删除元素的精确索引位置,从而避免了第二次搜索.一个更好的版本是:

String s = "Hello"; v.remove(s);

最后,我们再来看一个有关Vector类的代码片段:

for(int I=0; I++;I v.length)

如果v包含100,000个元素,这个代码片段将调用v.size()方法100,000次.虽然size方法是一个简单的方法,但它仍旧需要一次方法调用的开销,至少JVM需要为它配置以及清除堆栈环境.今天这一节,for循环内部的代码不会以任何方式修改Vector类型对象v的大小,所以呢上面的代码最好改写成下面这种形式:

int size = v.size(); for(int I=0; I++;Isize)

虽然这是一个简单的改动,但它仍旧赢得了性能.毕竟,每一个CPU周期都是宝贵的.

例如:

public class ShopCart {

private List carts ;

public void add (Object item) {

if(carts == null) {

carts = new ArrayList();

crts.add(item);

public void remove(Object item) {

if(carts. contains(item)) {

carts.remove(item);

public List getCarts() {

//返回只读列表

return Collections.unmodifiableList(carts);

//不推荐这种方式

//this.getCarts().add(item);

用new关键词创建类的实例时,构造函数链中的所有构造函数都会被自动调用.但如果一个对象实现了Cloneable接口,我们可以调用它的clone()方法.clone()方法不会调用任何类构造函数.

在使用设计模式(Design Pattern)的场合,如果用Factory模式创建对象,则改用clone()方法创建新的对象实例非常简单.例如,下面是Factory模式的一个典型实现:

public static Credit getNewCredit() {

return new Credit();

改进后的代码使用clone()方法,如下所示:

private static Credit BaseCredit = new Credit();

return (Credit) BaseCredit.clone();

上面的思路对于数组处理同样很有用.

考虑下面的代码:

用移位操作替代乘法操作可以极大地提高性能.下面是修改后的代码:

session = HttpServletRequest.getSession(true);这也是JSP中隐含的session对象的来历.由于session会消耗内存资源,所以呢,如果不打算使用session,应该在所有的JSP中关闭它.

对于那些无需跟踪会话状态的页面,关闭自动创建的会话可以节省一些资源.使用如下page指令:%@ page session="false"%

许多开发者随意地把大量信息保存到用户会话之中.一些时候,保存在会话中的对象没有及时地被垃圾回收机制回收.从性能上看,典型的症状是用户感到系统周期性地变慢,却又不能把原因归于任何一个具体的组件.如果监视JVM的堆空间,它的表现是内存占用不正常地大起大落.

解决这类内存问题主要有二种办法.第一种办法是,在所有作用范围为会话的Bean中实现HttpSessionBindingListener接口.这样,只要实现valueUnbound()方法,就可以显式地释放Bean使用的资源.另外一种办法就是尽快地把会话作废.大多数应用服务器都有设置会话作废间隔时间的选项.另外,也可以用编程的方式调用会话的setMaxInactiveInterval()方法,该方法用来设定在作废会话之前,Servlet容器允许的客户请求的最大间隔时间,以秒计.

Symphony工程也同样支持这个功能.JSP缓冲标记既能够缓冲页面片断,也能够缓冲整个页面.当JSP页面执行时,如果目标片断已经在缓冲之中,则生成该片断的代码就不用再执行.页面级缓冲捕获对指定URL的请求,并缓冲整个结果页面.对于购物篮、目录以及门户网站的主页来说,这个功能极其有用.对于这类应用,页面级缓冲能够保存页面执行的结果,供后继请求使用.

在典型的JSP应用系统中,页头、页脚部分往往被抽取出来,然后根据需要引入页头、页脚.当前,在JSP页面中引入外部资源的方法主要有两种:include指令,以及include动作.

include指令:例如%@ include file="copyright.html"

%.该指令在编译时引入指定的资源.在编译之前,带有include指令的页面和指定的资源被合并成一个文件.被引用的外部资源在编译时就确定,比运行时才确定资源更高效.

include动作:例如jsp:include page="copyright.jsp"

/.该动作引入指定页面执行后生成的结果.由于它在运行时完成,所以呢对输出结果的控制更加灵活.但时,只有当被引用的内容频繁地改变时,或者在对主页面的请求没有出现之前,被引用的页面无法确定时,使用include动作才合算.

Recently

Used)算法把部分不活跃的会话转储到磁盘,甚至可能抛出"内存不足"异常.在大规模系统中,串行化会话的代价是很昂贵的.当会话不再需要时,应当及时调用HttpSession.invalidate()方法清除会话.HttpSession.invalidate()方法通常可以在应用的退出页面调用.

经常遇到对HashMap中的key和value值对的遍历操作,有如下两种方法:MapString, String[] paraMap = new HashMapString, String[]();

................//第一个循环

SetString appFieldDefIds = paraMap.keySet();

for (String appFieldDefId : appFieldDefIds) {

String[] values = paraMap.get(appFieldDefId);

......

//第二个循环

for(EntryString, String[] entry : paraMap.entrySet()){

String appFieldDefId = entry.getKey();

String[] values = entry.getValue();

.......

第一种实现明显的效率不如第二种实现.

分析如下 SetString appFieldDefIds = paraMap.keySet(); 是先从HashMap中取得keySet

代码如下:

public SetK keySet() {

SetK ks = keySet;

return (ks != null ? ks : (keySet = new KeySet()));

private class KeySet extends AbstractSetK {

public IteratorK iterator() {

return newKeyIterator();

public int size() {

return size;

public boolean contains(Object o) {

return containsKey(o);

public boolean remove(Object o) {

return HashMap.this.removeEntryForKey(o) != null;

public void clear() {

HashMap.this.clear();

其实就是返回一个私有类KeySet, 它是从AbstractSet继承而来,实现了Set接口.

再来看看for/in循环的语法

for(declaration : expression_r)

statement

在执行阶段被翻译成如下各式

for(IteratorE #i = (expression_r).iterator(); #i.hashNext();){

declaration = #i.next();

所以呢在第一个for语句for (String appFieldDefId : appFieldDefIds) 中调用了HashMap.keySet().iterator() 而这个方法调用了newKeyIterator()

IteratorK newKeyIterator() {

return new KeyIterator();

private class KeyIterator extends HashIteratorK {

public K next() {

return nextEntry().getKey();

所以在for中还是调用了

在第二个循环for(EntryString, String[] entry : paraMap.entrySet())中使用的Iterator是如下的一个内部类

private class EntryIterator extends HashIteratorMap.EntryK,V {

public Map.EntryK,V next() {

return nextEntry();

此时第一个循环得到key,第二个循环得到HashMap的Entry

效率就是从循环里面体现出来的第二个循环此致可以直接取key和value值

而第一个循环还是得再利用HashMap的get(Object key)来取value值

现在看看HashMap的get(Object key)方法

public V get(Object key) {

Object k = maskNull(key);

int hash = hash(k);

int i = indexFor(hash, table.length); //Entry[] table

EntryK,V e = table;

while (true) {

if (e == null)

return null;

java性能优化热点代码-图3

if (e.hash == hash eq(k, e.key))

return e.value;

e = e.next;

其实就是再次利用Hash值取出相应的Entry做比较得到结果,所以使用第一中循环相当于两次进入HashMap的Entry中

而第二个循环取得Entry的值之后直接取key和value,效率比第一个循环高.其实按照Map的概念来看也应该是用第二个循环好一点,它本来就是key和value的值对,将key和value分开操作今天这一节不是个好选择.

版权声明:倡导尊重与保护知识产权。未经许可,任何人不得复制、转载、或以其他方式使用本站《原创》内容,违者将追究其法律责任。本站文章内容,部分图片来源于网络,如有侵权,请联系我们修改或者删除处理。

编辑推荐

热门文章