我课程中的部分代码(除没写):
def?f_add(a,b):
return?a+b
def?f_mul(a,b):
return?a*b
def?f_sub(a,b):
return?a-b
def?g1(f,a,b):
return?f(a,b)
print?g1(f_sub,?g1(f_mul,?g1(f_add,a,b),?c),?d),?g1(f_mul,?g1(f_add,a,b),?g1(f_sub,c,?d))
对python感兴趣可以到这里了解一下:
##最小二乘法
import?numpy?as?np?##科学计算库?
import?scipy?as?sp?##在numpy基础上实现的部分算法库
import?matplotlib.pyplot?as?plt?##绘图库
from?scipy.optimize?import?leastsq?##引入最小二乘法算法
'''
设置样本数据,真实数据需要今天这一节处理
##样本数据(Xi,Yi),需要转换成数组(列表)形式
设定拟合函数和偏差函数
函数的形状确定过程:
①先画样本图像
##需要拟合的函数func?:指定函数的形状
def?func(p,x):
k,b=p
return?k*x+b
##偏差函数:x,y都是列表:这里的x,y更上面的Xi,Yi中是一一对应的
def?error(p,x,y):
return?func(p,x)-y
主要部分:附带部分说明
①leastsq函数的返回值tuple,第一个元素是求解结果,第二个是求解的代价值(个人理解)
#k,b的初始值,可以任意设定,经过几次试验,发现p0的值会影响cost的值:Para[1]
#把error函数中除了p0以外的参数打包到args中(使用要求)
Para=leastsq(error,p0,args=(Xi,Yi))
#读取结果
k,b=Para[0]
print("k=",k,"b=",b)
print("cost:"+str(Para[1]))
print("求解的拟合直线为:")
绘图,看拟合效果.
matplotlib默认不支持中文,label设置中文的话需要另行设置
如果报错,改成英文就可以
#画样本点
#画拟合直线
y=k*x+b?##函数式
plt.legend(loc='lower?right')?#绘制图例
plt.show()
可以把类当做参数传入到函数里,在函数里进行实例化.
把类A当做参数传入get_instance_from_class.在get_instance_from_class中对A进行实例化,获得其实例,并返回.
class A:
def __init__(self):
print "I am a A instance."
def print_myself(self):
print "print myself."
def main():
def get_instance_from_class(a):
return a()
a = get_instance_from_class(A)
a.print_myself()
if __name__=="__main__":
main()
以上就是土嘎嘎小编为大家整理的乘函数在Python相关主题介绍,如果您觉得小编更新的文章只要能对粉丝们有用,就是我们最大的鼓励和动力,不要忘记讲本站分享给您身边的朋友哦!!